Injector-internal thermal desorption is a promising technique for the analysis of a wide range of food components (e.g., flavors) or food contaminants (e.g., solvent residues, pesticides, or migrants from packaging materials) in edible oils and fats or fatty food extracts. Separation from the fatty matrix occurs during injection. Using programmed temperature vaporizing (PTV) injection, the oily sample or sample extract was deposited on a small pack of glass wool from which the components of interest were evaporated and transferred into the column in splitless mode, leaving behind the bulk of the matrix. Towards the end of the analysis, the oil was removed by heating out the injector and backflushing the precolumn. The optimization dealt with the gas supply configuration enabling backflush, the injector temperature program (sample deposition, desorption, and heating out), separation of the sample liquid from the syringe needle and positioning it on a support, deactivation of the support surface, holding the plug of fused silica wool by a steel wire, and the analytical sequence maintaining adsorptivity at the desorption site low. It was performed for a mixture of poly(vinyl chloride) (PVC) plasticizers in oil or fatty food. Using MS in SIM, the detection limit was below 0.1 mg/kg for plasticizers forming single peaks and 1 mg/kg for mixtures like diisodecyl phthalate. For plasticizers, RSDs of the concentrations were below 10%; for the slip agents, oleamide and erucamide, it was 12%. The method of incorporating PTV injection was used for about one year for determining the migration from the gaskets of lids for glass jars into oily foods.