For many avian species, the decision to initiate breeding is based on information from a variety of environmental cues, including photoperiod, temperature, food availability, and social interactions. There is evidence that the hormone corticosterone may be involved in delaying the onset of breeding in cases where supplemental cues, such as low food availability and inclement weather, indicate that the environment is not suitable. However, not all studies have found the expected relationships between breeding delays and corticosterone titers. In this review, we present the hypothesis that corticosterone physiology mediates flexibility in breeding initiation (the "CORT-Flexibility Hypothesis"), and propose six possible corticosterone-driven mechanisms in pre-breeding birds that may delay breeding initiation: altering hormone titers, negative feedback regulation, plasma binding globulin concentrations, intracellular receptor concentrations, enzyme activity and interacting hormone systems. Based on the length of the breeding season and species-specific natural history, we also predict variation in corticosterone-regulated pre-breeding flexibility. Although few studies thus far have examined mechanisms beyond plasma hormone titers, the CORT-Flexibility Hypothesis is grounded on a solid foundation of research showing seasonal variation in the physiological stress response and knowledge of physiological mechanisms modulating corticosteroid effects. We propose six possible mechanisms as testable and falsifiable predictions to help clarify the extent of HPA axis regulation of the initiation of breeding.