Bacterial pathogens are recognized by the innate immune system through pattern recognition receptors, such as Toll-like receptors (TLRs). Engagement of TLRs triggers signaling cascades that launch innate immune responses. Activation ofMAPKs and NF-B, elements of the major signaling pathways induced by TLRs, depends in most cases on the adaptor molecule MyD88. In addition, Gram-negative or intracellular bacteria elicit MyD88-independent signaling that results in production of type I interferon (IFN). Here we show that in mouse macrophages, the activation of MyD88-dependent signaling by the extracellular Gram-positive human pathogen group A streptococcus (GAS; Streptococcus pyogenes) does not require TLR2, a receptor implicated in sensing of Gram-positive bacteria, or TLR4 and TLR9. Redundant engagement of either of these TLR molecules was excluded by using TLR2/4/9 triple-deficient macrophages. We further demonstrate that infection of macrophages by GAS causes IRF3 (interferon-regulatory factor 3)-dependent, MyD88-independent production of IFN. Surprisingly, IFN is induced also by GAS lacking slo and sagA, the genes encoding cytolysins that were shown to be required for IFN production in response to other Gram-positive bacteria. Our data indicate that (i) GAS is recognized by a MyD88-dependent receptor other than any of those typically used by bacteria, and (ii) GAS as well as GAS mutants lacking cytolysin genes induce type I IFN production by similar mechanisms as bacteria requiring cytoplasmic escape and the function of cytolysins.Group A streptococcus (GAS 4 ; Streptococcus pyogenes) is an important human Gram-positive pathogen responsible for a wide spectrum of infections, ranging from mild diseases (e.g. tonsillitis) to serious illness (e.g. necrotizing fasciitis, sepsis, or severe poststreptococcal sequelae) (1). The persistence of GAS in the human population and the severity of some GAS diseases are the result of activities of a number of virulence factors that enable the pathogen to escape immune surveillance or, on contrary, induce an overreaction of the immune system (2, 3). Although GAS is generally regarded as an extracellular pathogen, recent findings suggest that GAS can survive (although not multiply) within various host cells, such as neutrophils, macrophages, epithelial cells, and fibroblasts (4 -7). The surviving bacteria may serve as a reservoir for recurrent GAS diseases.Immune responses to bacteria are initiated by recognition of bacterial components called pathogen-associated molecular patterns through host cell-encoded pattern recognition receptors (PRRs) (8, 9). Typically, pathogen-associated molecular patterns are components of the bacterial cell wall (e.g. lipopolysaccharide and lipoteichoic acid), but they may also be derived from the inside of bacteria (e.g. DNA). The primary function of PRRs is to trigger signaling cascades that activate antimicrobial defense programs. The best studied class of PRRs is the Toll-like receptor (TLR) family, which consists of 13 transmembrane glycoprote...