As a new and emerging technology, photocatalytic oxidation is widely used in the fields of sewage treatment and organic pollution control. In this study, CdS nanoparticles were prepared at room temperature by an innovative preparation method, then TiO2 nanorod–CdS nanoparticle heterojunction photocatalysts were prepared using the solvothermal method, with TiCl3 used as the precursor for TiO2 nanorods. This study mainly took advantage of the small size of the CdS nanoparticles in combination with TiO2 nanorods, and the resultant heterojunctions had large specific surface areas, thereby increasing the contact area between the catalysts and the contaminants. In addition, due to the lower band gap energy (2.4 eV) of CdS, the photo response range of the heterojunction photocatalysts was also increased. In an experimental study, through photocatalytic performance tests of the catalysts with different weight ratios, it was found that the TiO2(40%)@CdS composite had the best photocatalytic performance and the highest catalytic rate. BET, SEM, and other tests showed that the specific surface area of the TiO2(40%)@CdS composite was the largest. TiO2 nanorods and CdS particles were uniformly distributed in the composite, and the optical response range was extended to the visible light region.