Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Drill Pipe conveyance (TLC/PCL) of wireline logging tools or Logging While Drilling (LWD) is usually required for high deviation / high differential sticking risk logging scenarios. These are costly in terms of rig time and service company costs. This paper details how a full suite of high-quality open hole log data was obtained on wireline in a high angle 16,500ft wellbore utilizing a new conveyance system and a polymer-locked high strength cable. The new conveyance system, utilizing wheeled carriages and a holefinder with nose angled upwards, takes a holistic approach to tool conveyance, reducing drag while ensuring both correct tool orientation and optimum contact and standoff for each logging service. Management of tool centers of gravity relative to the wheel axes ensures correct orientation. The reduction in friction due to wheeled carriages vs weight and cable load is modelled before the operation in order to ensure successful runs, both into and out of the wellbore. Polymer-locked high strength cable significantly increases maximum safe pull capability and enhanced data transmission technology allows faster logging speeds, greater rig time efficiency and reduced sticking risk. The wheeled carriage system enabled conventional logging in a high angle well, minimized stick-slip and reduced differential sticking risk. The unique holefinder prevented tool hold up during descent. The Vertical Seismic Profile (VSP) run (the only run not able to utilize the system due to tool size and design) was held up on a ledge above the lowest reservoir of interest. The high strength cable allowed safe retrieval of tools (over-pull > 6000lbs) in one particularly sticky zone. In a world first, an array sonic tool was centralized through management of weighted and eccentralized tool sections using bespoke wheels. This eliminated the drag inherent to traditional methods of sonic centralization (centralization using powered calipers and/or spring centralizers), resulting in excellent data quality. Nuclear Magnetic Resonance logs were obtained by orienting the tool sensor with wheels which utilized tool weight to provide sensor application force. This removed the need for additional centralizers, resulting in data devoid of stick-slip artefacts (an issue in previous wells). The formation fluid sampling run was conveyed on drill pipe, taking 6 days of rig time. There are further significant efficiency gains to be had on future operations by using the new conveyance system on sampling tools (operators have already moved in this direction in the Gulf of Mexico).
Drill Pipe conveyance (TLC/PCL) of wireline logging tools or Logging While Drilling (LWD) is usually required for high deviation / high differential sticking risk logging scenarios. These are costly in terms of rig time and service company costs. This paper details how a full suite of high-quality open hole log data was obtained on wireline in a high angle 16,500ft wellbore utilizing a new conveyance system and a polymer-locked high strength cable. The new conveyance system, utilizing wheeled carriages and a holefinder with nose angled upwards, takes a holistic approach to tool conveyance, reducing drag while ensuring both correct tool orientation and optimum contact and standoff for each logging service. Management of tool centers of gravity relative to the wheel axes ensures correct orientation. The reduction in friction due to wheeled carriages vs weight and cable load is modelled before the operation in order to ensure successful runs, both into and out of the wellbore. Polymer-locked high strength cable significantly increases maximum safe pull capability and enhanced data transmission technology allows faster logging speeds, greater rig time efficiency and reduced sticking risk. The wheeled carriage system enabled conventional logging in a high angle well, minimized stick-slip and reduced differential sticking risk. The unique holefinder prevented tool hold up during descent. The Vertical Seismic Profile (VSP) run (the only run not able to utilize the system due to tool size and design) was held up on a ledge above the lowest reservoir of interest. The high strength cable allowed safe retrieval of tools (over-pull > 6000lbs) in one particularly sticky zone. In a world first, an array sonic tool was centralized through management of weighted and eccentralized tool sections using bespoke wheels. This eliminated the drag inherent to traditional methods of sonic centralization (centralization using powered calipers and/or spring centralizers), resulting in excellent data quality. Nuclear Magnetic Resonance logs were obtained by orienting the tool sensor with wheels which utilized tool weight to provide sensor application force. This removed the need for additional centralizers, resulting in data devoid of stick-slip artefacts (an issue in previous wells). The formation fluid sampling run was conveyed on drill pipe, taking 6 days of rig time. There are further significant efficiency gains to be had on future operations by using the new conveyance system on sampling tools (operators have already moved in this direction in the Gulf of Mexico).
Obtaining high resolution, quality formation evaluation data is still only possible with wireline logging. However, with the continued push into deeper and more complex drilling environments, many challenges have been placed in the way of wireline logging, including high tension, high deviation, and increased differential pressure. These factors contribute to an increased risk of tool sticking incidents and lost-in-hole scenarios. Several methods of mitigating these issues on surface (powered capstans, pipe conveyance, etc) have been implemented in the past, but none have been successful in reducing or eliminating the risk downhole without introducing further drawbacks. This paper describes how a new wireline conveyance system has eliminated these issues. The conveyance system consists of wheeled carriages that carry the toolstring off-centre. The mass of the toolstring acts as a counterweight to ensure correct tool orientation in the wellbore. This orientation feature also enables a "guide" device to help navigate ledges and washouts. Such a system eliminates toolstring hold ups, allows access to highly deviated wells without pipe conveyance or tractors, and significantly mitigates differential sticking hazards, while also offering additional benefits in operational efficiency and data quality. A case study from a particularly difficult well in New Zealand is presented. Data acquisition in this well was fraught with challenges: In addition to the 2000m tangent section at 67° deviation, well had severe borehole breakouts. Previous experience in similar scenarios with conventional data acquisition methods yeided poor results. The wheeled carriage system was deployed in multiple innovative configurations resulting in the acquisition of excellent quality data from five wireline descents in hole. This wireline conveyance system has been routinely deployed on multiple deepwater operations in the Gulf of Mexico. One such operation is presented where large gains in logging efficiency have been realised, particularly with the elimination of differential sticking risk and time-consuming pipe conveyed logging. The new technology takes a holistic approach to wireline tool conveyance: Prevent sticking issues using wheeled carriages and mitigate fishing risk using ultra-high strength wireline cables. Wheeled carriages greatly reduce the tool-borehole contact area, preventing the incidence of tool sticking. In addition, wheeled carriages reduce drag while ensuring optimum data quality by sensor position and orientation within the wellbore. Ultra-high strength cables provide ability to log at very high tensions and at the same time provide high overpull capability. The result is a safe, efficient, cost effective and complete Wireline data acquisition.
Wireline logging in a complex well profile, such as extended reach drilling (ERD) wells, presents many challenges for conveyance and data quality. Traditional pipe conveyed logging (PCL) or coiled tubing (CT) are prohibitive in terms of rig time, operational complexity and cost. Alternatively, tractor conveyance is limited by the available force in long laterals. Tools and accessories create higher friction and might jeopardize tool position in the horizontal section. Consequently, both data quality and reaching total depth are compromised. This paper details an innovative deployment technique using oriented wheels to address these challenges. The new centralizing system, comprised of bespoke wheeled carriages, takes a holistic approach to tool conveyance, reducing drag while ensuring optimum sensor orientation. Tool position is achieved through management of tool center of gravity, relative to the wheel axes. The idea of "centralizing by decentralizing" uses the wheeled carriages instead of bow spring centralizers. An eccentered counterweight is included to ensure the proper orientation of the logging sensors. In addition to improving data quality with proper centralization, the wheels minimize friction and the required force to push the toolstring when combined with a tractor. This enables the toolstring to safely and efficiently reach the well bottom and avoid multiple attempts and associated downhole failures. In the planning phase, calibrated software simulation parameters for this technique help to predict free-fall depth and required tractoring force. The wheeled carriages were deployed in an ERD well for cement evaluation across a 9-5/8" casing and could reach a world record of 85° by gravity. The reduced friction and optimized tool position resulted in higher tractor force margins; and so a net gain in the overall tractoring distance. Also, the low drag and surface tension enabled a sufficient pull capacity with a minimum drive combination. For data acquisition, this deployment enabled a minimum eccentricity, resulting in better cement evaluation data quality and reduced uncertainty related to interpretation. In addition to these benefits, a tangible and direct savings of rig time has improved safety, operational efficiency and well delivery KPIs. Oriented wheels with tractors were deployed in other challenging environments and showed consistent and reliable results. This innovative technique can be deployed in both open-hole and cased-hole with fitted design depending on the borehole size, well profile and complexity of the toolstring configuration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.