III-V semiconductors present interesting properties and are already used in electronics, lightening and photonic devices. Integration of III-V devices onto a Si CMOS platform is already in production using III-V devices transfer. A promising way consists in using hetero-epitaxy processes to grow the III-V materials directly on Si and at the right place. To reach this objective, some challenges still needed to be overcome. In this contribution, we will show how to overcome the different challenges associated to the heteroepitaxy and integration of III-As onto a silicon platform. We present solutions to get rid of antiphase domains for GaAs grown on exact Si(100). To reduce the threading dislocations density, efficient ways based on either insertion of InGaAs/GaAs multilayers defect filter layers or selective epitaxy in cavities are implemented. All these solutions allows fabricating electrically pumped laser structures based on InAs quantum dots active region, required for photonic and sensing applications.