Improving soil quality is of growing interest and, among optimal solutions, the reuse and recycling of biopolymers of pelt waste from the tannery industry have been proposed, one of them being for collagen hydrolysate with micronutrients and polymers incorporated, to be used as fertilizers for poor soils rehabilitation. As functionalization agents, polyacrylamide, starch and dolomite were included into biopolymer matrixes in order to enhance their specific efficiency. These fertilizers were adequately characterized for their physical–chemical properties, including nutrient content, and tested on three poor soils, while a fourth sample of normal soil was chosen for comparative purposes. These soils were also characterized for their texture and physical–chemical properties in order to establish the fertility state of the soils as a function of nutrient content. In this respect, a series of agrochemical tests were developed at laboratory scale, simulating real agriculture environments in a vegetation room, where a significant plant growth in height was observed for all the agro-hydrogels with nutrients encapsulated, and multiplication of the nodosities number was observed in the case of the soybean culture. The most significant effect was obtained in the case of the fertilizer functionalized with starch. Finally, the application dose of the organic fertilizers for specific culture plants was estimated, such as field cultures (cereals, corn), field vegetables, vineyards or fruit-growing plantations. These agro-collagen fertilizers are particularly recommended for amendment of field cereals and vegetables. The novelty of this study mainly consists of the recovery and recycling of the pelt waste as efficient fertilizers after their adequate functionalization with synthetic or natural biopolymers.