Purpose. The research is devoted to the experimental choice of injection composition for auger technology of installation of underground anti-filtration shields under the source of pollution. The auger technology for the arrangement of an anti-filtration shield consists of pilot holes made by the horizontal directional drilling, which is followed by the arrangement of a waterproof layer by replacing the soil with auger by special concrete solution. Methodology. The main research method is experimental-statistical modeling, which includes conducting laboratory tests; correlation-regression analysis of the obtained data; qualitative, quantitative and graphical analysis of the obtained regularities of the studied indicators change from the varied factors. Findings. The main results of the study are the following: substantiation of the relevance of the development of the auger technology for the protection of underground space; development of methods and conducting laboratory experiments in choosing the injectable solution; analysis of experimental and statistical regularities of changes in water absorption and time of plastic strength setting when varying the composition of the anti-filtration shield (concentration of fiber, bentonite, water glass); development of the concept of technology of the anti-filtration shield arrangement. Originality. Experimental studies made it possible to establish that the minimum water absorption of the shied samples is observed at the lowest concentration of fiber (0.5%), bentonite (1%) and liquid glass (2%) in the injected solution. For structures of small width (1020m), there are suitable compositions with a minimum time of plastic strength setting at a concentration of fiber (3%), bentonite (5%) and water glass (18%). For structures with a large width (4060m), there are suitable compositions with a long time of plastic strength at a concentration of fiber (9%), bentonite (5%) and water glass (6%). Practical value. Experimental results made it possible to develop technological recommendations for construction of anti-filtration shields using the auger technology. Namely: to develop a concept and procedure of works, to calculate the costs of labor and machine time, to compile a list of necessary materials, machinery and equipment.