<p><span lang="IN">Soil fauna as ecosystem engineers </span><span>have the ability to </span><span lang="IN">creat</span><span>e </span><span lang="IN">soil biostructure</span><span>s, with the capacity to </span><span lang="IN">sav</span><span>e</span><span lang="IN"> arbuscular mycorrhizal fungi (AMF) spores. </span><span>This study therefore aims to </span><span lang="IN">investigate the </span><span>AMF </span><span lang="IN">spore density in the biostructures created by cooperation between earthworms and ants with a different organic matter composition</span><span>,</span><span lang="IN"> and to analyze the </span><span>biostructures’ </span><span lang="IN">potential as a source of </span><span>AMF </span><span lang="IN">inoculum on cocoa seedlings. </span><span>In the first experiment, a </span><span lang="IN">combination of earthworms and ants composition</span><span>, as well as a </span><span lang="IN">mixture of <em>G. sepium</em> leaf (GLP), cocoa shell bean (CSB), and sago dregs (SD)</span><span>,</span><span lang="IN"> was tested</span><span>. Meanwhile, </span><span lang="IN">in the </span><span>second</span><span lang="IN"> experiment</span><span>, t</span><span lang="IN">he</span><span> effect of</span><span lang="IN"> biostructures on cocoa seedlings grown </span><span>i</span><span lang="IN">n unsterile soil</span><span>,was </span><span lang="IN">examined</span><span>. According to the results, the highest</span><span lang="IN"> AMF spore </span><span>density was obtained using </span><span lang="IN">20 earthworms+10 ants with 50%GLP+50%CSB + 0%SD treatment</span><span>. Furthermore, the t</span><span lang="IN">otal AMF spores </span><span>were </span><span lang="IN">positively correlated</span><span> with the total P value, but negatively correlated </span><span lang="IN">with </span><span>the </span><span lang="IN">C/N ratio</span><span>. Therefore, bi</span><span lang="IN">ostructure application increased AMF spores number in rhizosphere and </span><span>the cocoa seedling’s </span><span lang="IN">root infection</span><span>. Furthermore, </span><span lang="IN">biostructure</span><span>s</span><span lang="IN"> resulting from the collaborative activity </span><span>between</span><span lang="IN"> different soil fauna ecosystem engineers </span><span>were able to transmit </span><span lang="IN">AMF spore</span><span>s </span><span lang="IN">to </span><span>infected </span><span lang="IN">plant root</span><span>s</span><span lang="IN"> growing </span><span>i</span><span lang="IN">n non-sterile soil.</span></p>