One-dimensional semiconductors are interesting materials due to their unique structural features and anisotropy, which grant them intriguing optical, dielectric and mechanical properties. In this work, we report on SnBrP, a lighter homologue of the first inorganic double helix compound SnIP. This class of compounds is characterized by intriguing mechanical and electronic properties, featuring a high flexibility without modulation of physical properties. Semiconducting SnBrP can be synthesized from red phosphorus, tin and tin(II)bromide at elevated temperatures and crystallizes as red-orange, cleavable needles. Raman measurements pointed towards a double helical building unit in SnBrP, showing similarities to the SnIP structure. After taking PL measurements, HR-TEM, and quantum chemical calculations into account, we were able to propose a sense full structure model for SnBrP.