The effects of dietary applied of β-damascone and its synthetic derivatives γ- and δ-halolactones, which show strong antifeedant activity, on the growth and development of larvae of the lesser mealworm, Alphitobius diaperinus Panzer (Coleoptera: Tenebrionidae), were studied. Bioassays were performed in a dose-dependent manner. In the bioassays, oat flakes treated with 1.0, 0.5, and 0.1 % (w/v) acetone solutions of the tested compound or acetone alone as control were served as food. The experiments were conducted using 2-week-old larvae with an average body weight of 4.35–4.88 mg. High correlations between antifeedant activity and larvicidal and growth-inhibitory effects were observed. Larvae reared on diets containing the compounds (at a concentration of 1 %) with high deterrent activity were characterized by a prolonged period of development, lower body weight gain, and strong tendency for cannibalism as a result of starvation. The control larvae ended their development after 24 days with a mean body weight of 22.9 mg. At the same developmental time, the mean body weights of larvae treated with the δ-halolactones γ-chloro- and γ-bromo-δ-lactone were only 60.3 % and 43.2 % of that of the control larvae. The larval periods for larvae on the diets containing γ-chloro- and γ-bromo-δ-lactone were 33 and 41 days, respectively. The larval developmental time and body weight gain were not significantly influenced by lower doses of the compounds, with the exception of γ-bromo-δ-lactone. This compound, when applied at a concentration of 0.5 %, significantly prolonged larval development as compared to the control larvae, and caused high mortality of larvae and pupae. The adult emergence percentage was 37.51 % when this treatment was applied, as compared to 90.0 % in the control. Thus, β-damascone derivatives with a lactone ring exhibit both dose-dependent behavioral effects and post-ingestion toxicity against A. diaperinus larvae, and may have the potential to control this pest.