Organochlorine pesticides and polychlorinated biphenyls are toxic, carcinogenic, and have a high potential for bioaccumulation. Due to their stability, they are still considered an environmental problem even though the use of most of them has been phased out several decades ago. Soil is a matrix which can retain these contaminants to a great extent. This ability is often associated with the total organic carbon content (TOC). In order to judge the pollution status of soil and to make monitoring data more easily comparable a simple, yet robust extraction method is needed. Agitation solid-liquid-extraction is well suited for this purpose. However, the influence of TOC on the analyte recovery has to be known. For the presented study, 12 organochlorine pesticides and 7 polychlorinated biphenyls were spiked into four model soils with organic carbon contents between 1.6% -13.3%. The matrices were extracted using solid-liquid extraction between 45 minutes and 16 hours. For comparison, all soils were also extracted using pressurised liquid extraction and Soxhlet extraction. After clean-up the extracts were measured using a gas chromatography-mass spectrometry (GC-MS) system. Statistical analysis of the results implied that the TOC content of the soils did not have significant influence on the extraction efficiency. A longer solid-liquid extraction time did not necessarily increase analyte recovery: Extraction for one hour resulted in 88% recovery while 16 hour extraction led to 89%. Thus, the efficiency of all the methods was comparable for all model soils. Additional investigations regarding GC liner performance highlighted the need for isotopically labelled standards during the analysis of thermolabile pesticides.