The modulation accuracy of Multi-Plane Light Conversion (MPLC) mainly depends on the positioning accuracy of the phase mask on the Spatial Light Modulator (SLM). To improve positioning accuracy, the impact of phase mask shift on modulation accuracy is investigated, and a position method is proposed. In order to investigate the influence of phase mask offset on the input light conversion effect, a convolution transmission model for the adjustable multi-pass cavity is established. Then, the positioning process for the phase masks is analyzed and simulated, and a method of positioning the phase masks is presented. This method reduces the positioning time and increases the positioning accuracy to 8 μm. Finally, experiments are performed to verify the feasibility of the method. Experimental results show that the similarity of the adjustable multi-pass cavity positioned by this method can reach 93.44%.