Establishing a standard measurement for drilling and screwing bone implants in different amounts and qualities of bone tissue, in a simple and adequate way to control and predict results, is the gold standard for successful primary stability and better results on long-term osseointegration. So far, the maximum insertion torque (MIT) has been used as the main parameter to achieve success in primary stability and osseointegration, although it has shown conflicting results in the literature for over four decades when predicting standard or minimum values. Basically, the surgeon's experience guides the planning and execution of the surgical procedure, adapted in each case according to his tactile experience, guided by X-ray analysis and the bone and general conditions of the patient. In this work, using a new biomechanical simple machine as a dental implant, a new method will be described mathematically and experimentally, which standardizes the compression and torque in the implant-bone contact, in five different bone densities, during the achievement of mechanical primary stability. The results described the relationship between the MIT, maximum removal torque, and maximum force of static friction between implant-bone and bone-to-bone, achieving a controlled and predictable standard steady-state torque that maintains equilibrium in elastic stress for the primary stability of bone implants, hereby established for an innovative simple machine Bioactive Kinetic Screw.