The elimination of dyes discharged from industrial wastewater into water bodies is crucial due to its detrimental effects on aquatic organisms and potential carcinogenic impact on human health. Various methods are employed for dye removal, but they often fall short in completely degrading the dyes and generating large amounts of suspended solids. Hence, there is a critical need for an efficient process that can achieve complete dye degradation with minimal waste emission. Among traditional water treatment approaches, photocatalysis stands out as a promising method for degrading diverse toxic and organic pollutants present in wastewater. In this review, the heterogeneous photocatalysis process is well explained for dye removal. This comprehensive review not only provides insightful illumination on the classification of dyes but also thoroughly explains various dye removal methods and the underlying mechanisms of photocatalysis. Furthermore, factors which effect the activity of the photocatalysis process are also explained in detail. Likewise, we categorized the heterogeneous photocatalyst in three generations and observed their activity for dye removal. This review also addresses the challenges and effectiveness of this promising field. Its primary aim is to offer a comprehensive overview of the photocatalytic degradation of pollution and to explore its potential for further future applications.