Variable pitch technology is an indispensable key technology of large-scale wind turbines. The reliable pitch mechanism is the basic guarantee for achieving variable pitch. At present, the main problem with the design and maintenance of the variable pitch mechanism is that the pitch load is not clearly known. This paper focuses on obtaining pitch load characteristics through extracting SCADA (Supervisory Control and Data Acquisition) data. Here, the pitch load refers to the resistance moment to be overcome when the wind turbine blade is rotated on its own axis. From the data collected by the SCADA system, although the edgewise moment and the flapwise moment cannot be obtained, the pitch torque (load) can be extracted indirectly. This provides data support for the research. Specifically, the pitch moment is obtained by indirect calculation of the pitch motor current. Then, the effects of the wind speed, rotor speed, hub angle and pitch angle on the pitch load are theoretically analyzed. To obtain more reliable results, data preprocessing algorithms are presented to consider the data filtering range, the elimination of abnormal values and data dispersity. Subsequently, the influence mechanisms of wind speed, rotor speed, hub angle and pitch angle on the pitch load are investigated in detail based on the SCADA data.