Gypsum scaling in reverse osmosis (RO) desalination process is studied in presence of a novel fluorescent 1,8-naphthalimide-tagged polyacrylate (PAA-F1) by fluorescent microscopy, scanning electron microscopy (SEM), dynamic light scattering (DLS) and a particle counter technique. A comparison of PAA-F1 with a previously reported fluorescent bisphosphonate HEDP-F revealed a better PAA-F1 efficacy, and a similar behavior of polyacrylate and bisphosphonate inhibitors under the same RO experimental conditions. Despite expectations, PAA-F1 does not interact with gypsum. For both reagents, it is found that scaling takes place in the bulk retentate phase via heterogeneous nucleation step. The background "nanodust" plays a key role as a gypsum nucleation center. Contrary to popular belief, an antiscalant interacts with "nanodust" particles, isolating them from calcium and sulfate ions sorption. Therefore, the number of gypsum nucleation centers is reduced, and in turn, the overall scaling rate is diminished. It is also shown that, the scale formation scenario changes from the bulk medium, in the beginning, to the sediment crystals growth on the membrane surface, at the end of the desalination process. It is demonstrated that the fluorescent-tagged antiscalants may become very powerful tools in membrane scaling inhibition studies.However, in spite of numerous relevant studies, some controversy regarding both the dominant scaling mechanism in particular situations and the mechanism of antiscalant activity still exists [12][13][14][15][16][17][18]. Recent reviews on scale formation control in RO technologies [6,19] mention two main hypothetic mechanisms of inhibition: (i) antiscalant molecules adsorb on the active growth sites at the crystal surface of sparingly soluble inorganic salt and retard nucleation and crystal growth by distorting its crystal structure; (ii) antiscalant molecules provide similar electrostatic charge, and thus, repulsion between particles prevents them from agglomeration.Nevertheless, our recent static [20,21] and RO [22] experiments operating gypsum as a model scale in presence of a novel fluorescent-tagged bisphosphonate antiscalant 1-hydroxy-7-(6-methoxy-1,3dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)heptane-1,1-diyl-bis(phosphonic acid), HEDP-F (H 4 hedp-F) revealed a paradoxical effect: an antiscalant does not interact with gypsum at all, but provides nevertheless retardation of corresponding deposit formation. According to the classical crystallization theory [23], this is possible only in the case, when gypsum passes bulk heterogeneous nucleation, and exactly the "nanodust" plays the role of the solid phase template. Indeed, it is demonstrated that HEDP-F molecules being immersed into the stock solution (undersaturated against gypsum) occupy a significant part of "nanodust" crystallization centers and form there their own solid phase Ca 2 hedp-F·nH 2 O. However, polyacrylates are much less sensitive to calcium environment than phosphonates [20,21]. In this way, it was reasonable to study the trace...