In homogeneous catalysis, the structure and electronic configuration of the active catalysts can vary significantly. Changes in ligation, oxidation, and spin states have the potential to influence the catalytic cycle energetics strongly that, to a large degree, dictate the catalytic performance. With the increased use of computational screening strategies aimed towards the identification of new catalysts, ambiguity surrounding structure/electronic configurations can be problematic, as it is unclear which species should be computed to determine a catalyst's properties. Here, we show that a single volcano plot constructed from linear free energy scaling relationships is able to account for variations in ligation, oxidation, and spin state. These linear scaling relationships can also be used to predict the free energies associated with a specific structure and electronic configuration of a catalyst based on a single descriptor. As a result, a single volcano plot can be used to screen prospective new catalysts rapidly.