This review article addresses the increasing environmental concerns posed by synthetic dyes in water, exploring innovative approaches for their removal with a focus on zero-valent iron nanoparticles (nZVIs) synthesized through environmentally friendly methods. The article begins by highlighting the persistent nature of synthetic dyes and the limitations of conventional degradation processes. The role of nanoparticles in environmental applications is then discussed, covering diverse methods for metallic nanoparticle production aligned with green chemistry principles. Various methods, including the incorporation of secondary metals, surface coating, emulsification, fixed support, encapsulation, and electrostatic stabilization, are detailed in relation to the stabilization of nZVIs. A novel aspect is introduced in the use of plant extract or biomimetic approaches for chemical reduction during nZVI synthesis. The review investigates the specific challenges posed by dye pollution in wastewater from industrial sources, particularly in the context of garment coloring. Current approaches for dye removal in aqueous environments are discussed, with an emphasis on the effectiveness of green-synthesized nZVIs. The article concludes by offering insights into future perspectives and challenges in the field. The intricate landscape of environmentally friendly nZVI synthesis has been presented, showcasing its potential as a sustainable solution for addressing dye pollution in water.