Palm oil (PO), a semi-solid fat at room temperature, is a popular food ingredient. To steer the fat functionality, sucrose esters (SEs) are often used as food additives. Many SEs exist, varying in their hydrophilic-to-lipophilic balance (HLB), making them suitable for various food and non-food applications. In this study, a stearic–palmitic sucrose ester with a moderate HLB (6) was studied. It was found that the SE exhibited a complex thermal behavior consistent with smectic liquid crystals (type A). Small-angle X-ray scattering revealed that the mono- and poly-esters of the SE have different packings, more specifically, double and single chain-length packing. The polymorphism encountered upon crystallization was repeatable during successive heating and cooling cycles. After studying the pure SE, it was added to palm oil, and the crystallization behavior of the mixture was compared to that of pure palm oil. The crystallization conditions were varied by applying cooling at 20 °C/min (fast) and 1 °C/min (slow) to 0 °C, 20 °C or 25 °C. The samples were followed for one hour of isothermal time. Differential scanning calorimetry (DSC) showed that nucleation and polymorphic transitions were accelerated. Wide-angle X-ray scattering (WAXS) unraveled that the α-to-β′ polymorphic transition remained present upon the addition of the SE. SAXS showed that the addition of the SE at 0.5 wt% did not significantly change the double chain-length packing of palm oil, but it decreased the domain size when cooling in a fast manner. Ultra-small-angle X-ray scattering (USAXS) revealed that the addition of the SE created smaller crystal nanoplatelets (CNPs). The microstructure of the fat crystal network was visualized by means of polarized light microscopy (PLM) and cryo-scanning electron microscopy (cryo-SEM). The addition of the SE created a finer and space-filling network without the visibility of separate floc structures.