Tumor metastasis is a multistep process by which tumor cells disseminate from their primary site and form secondary tumors at a distant site. Metastasis occurs through a series of steps: local invasion, intravasation, transport, extravasation, and colonization. A developmental program termed epithelial-mesenchymal transition (EMT) has been shown to play a critical role in promoting metastasis in epithelium-derived carcinoma. Recent experimental and clinical studies have improved our knowledge of this dynamic program and implicated EMT and its reverse program, mesenchymal-epithelial transition (MET), in the metastatic process. Here, we review the functional requirement of EMT and/or MET during the individual steps of tumor metastasis and discuss the potential of targeting this program when treating metastatic diseases.Epithelial and mesenchymal cell types have long been recognized by their unique cell morphology and organization in tissues. Epithelial cells form polarized sheets or layers of cells that are connected laterally via several types of cellular junctions, including adherens junctions, desmosomes, and tight junctions. In addition, epithelial cells anchor themselves to the underlying basement membrane via hemidesmosomes to maintain apical-basal polarity. Both desmosomes and hemidesmosomes further connect with the epithelial-specific cytokeratin intermediate filaments. In contrast, mesenchymal cells embed themselves inside the extracellular matrix (ECM) and rarely establish tight contact with neighboring cells. During specific embryonic morphogenesis processes such as mesoderm formation and neural crest development, epithelial cells can exhibit enormous plasticity and transit into a mesenchymal state by activating the epithelial-mesenchymal transition (EMT) program. After EMT, these cells lose their epithelial junctions and switch to producing vimentin filaments. The functional hallmark of the EMT program is to allow stationary epithelial cells to gain the ability to migrate and invade during developmental morphogenesis (Boyer and Thiery 1993;Hay 1995).Although epithelial cells convert into the mesenchymal state during developmental EMT, entering the EMT program is not necessarily an irreversible commitment, as evident during kidney tubule formation. These epithelial cells can activate a transitory EMT program and then undergo a reverse process called mesenchymal-epithelial transition (MET) to continue their differentiation paths (Thiery et al. 2009;Lim and Thiery 2012). In many instances, the identification of an epithelial versus a mesenchymal state can be relatively fluid, and a partial EMT/MET frequently occurs to fulfill unique developmental tasks. These dynamic EMT/MET events highlight the enormous flexibility of presumably differentiated cells during morphogenesis.In the past decade, an increasing number of studies have provided strong evidence for the reinitiation of the EMT developmental program in carcinoma progression and metastasis. This EMT program in tumor metastasis possesses many morpholog...