SUMMARY
Most cell surface receptors for cytokines and growth factors signal as dimers, but it is unclear if remodeling receptor dimer topology is a viable strategy to ‘tune’ signaling output. We utilized diabodies (DA) as surrogate ligands in a prototypical dimeric receptor-ligand system, the cytokine Erythropoietin and its receptor (EpoR), to dimerize EpoR ectodomains in non-native architectures. Diabody-induced signaling amplitude varied from full to minimal agonism, and structures of the DA/EpoR complexes differed in EpoR dimer orientation and proximity. Diabodies also elicited biased, or differential activation of signaling pathways and gene expression profiles compared to EPO. Non-signaling diabodies inhibited proliferation of erythroid precursors from patients with a myeloproliferative neoplasm due to a constitutively active JAK2V617F mutation. Thus, intracellular oncogenic mutations causing ligand-independent receptor activation can be counteracted by extracellular ligands that re-orient receptors into inactive dimer topologies. This approach has broad applications for tuning signaling output for many dimeric receptor systems.