At approximately 09:36 UTC on 27 April 2016, a phreatic eruption occurred on Whakaari Island (White Island) producing an eruption sequence that contained multiple eruptive pulses determined to have occurred over the first 30 min, with a continuing tremor signal lasting ~ 2 h after the pulsing sequence. To investigate the eruption dynamics, we used a combination of cross-correlation and coherence methods with acoustic data. To estimate locations for the eruptive pulses, seismic data were collected and eruption vent locations were inferred through the use of an amplitude source location method. We also investigated volcanic acoustic-seismic ratios for comparing inferred initiation depths of each pulse. Initial results show vent locations for the eruptive pulses were found to have possibly come from two separate locations only ~ 50 m apart. These results compare favorably with acoustic lag time analysis. After error analysis, eruption sources are shown to conceivably come from a single vent, and differences in vent locations may not be constrained. Both vent location scenarios show that the eruption pulses gradually increase in strength with time, and that pulses 1, 3, 4, and 5 possibly came from a deeper source than pulses 2 and 6. We show herein that the characteristics and locations of volcanic eruptions can be better understood through joint analysis combining data from several data sources.