NASICON-type Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (LATP) is a widely used solid electrolyte in solid-state lithium batteries, owing to its excellent chemical stability against moisture and high total ionic conductivity. However, traditionally, densification of LATP has been achieved through a high-temperature sintering process (approximately 1000 °C) owing to its poor sinterability. Herein, we report a facile synthesis route to obtain highly sinterable LATP solid electrolyte using tetrabutyl titanate (C 16 H 36 O 4 Ti) as the titanium source and incorporating the traditional solid-state reaction method. The synthetic LATP powder mixed with a low ratio of LiTiPO 5 exhibited a hybrid crystalline−amorphous phase structure, which facilitated grain fusion, promoted structural homogeneity, and facilitated structural densification under low-temperature sintering. The sintered LATP pellet, which exhibited an interconnected structure and indistinct grain boundaries, achieved a relative density of >90% and an ionic conductivity of 0.667 mS/cm at a sintering temperature of only 750 °C. Additionally, we systematically studied and demonstrated the synthesis reaction mechanism, sintering behavior, and ionic diffusion kinetics of LATP electrolytes. Our study paves the way for synthesizing highly sinterable LATP solid electrolytes using a simple, additive-free, and cost-effective method.