A family of two-dimensional (2D) transition metal borides, referred to as MBenes, is recently emerging as novel materials with great potentials in electronic and energy harvesting applications to the field of materials science and technology. Transition metal borides can be synthesized from chemical exfoliation of ternary-layered transition metal borides, known as MAB phases. Previously it has been predicted that thin pristine 2D Sc-, Ti-, Zr-, Hf-, V-, Nb-, Ta-, Mo-, and W-based transition metal borides with hexagonal phase are more stable than their corresponding orthorhombic phase. Here, using a set of first-principles calculations (at absolute zero temperature), we have examined the geometric, dynamic stability, electronic structures, work function, bond strength, and mechanical properties of the hexagonal monolayer of transition metal borides (M = Sc, Ti, Zr, Hf, V, Nb, Ta, Mo, and W) chemically terminated with F, O, and OH. The results of the formation energies of terminated structures imply that the surface terminations could make a strong bond to the surface transition metals and provide the possibility of the development of transition metal borides with those surface terminations. Except for ScBO, which is an indirect bandgap semiconductor, the other transition metal borides are metallic or semimetal. Particularly, TiBF, ZrBF, and HfBF are metallic systems whose band dispersions close to the Fermi level indicate the coexistence of