Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In the current climate, there is a surge of controversy surrounding the topic of plastics. Undeniably and unavoidably, plastic has become a crucial part of this generation. However, the inappropriate disposal of plastic waste, as well as the increase in consumption, provokes serious environmental issues. The rising environmental awareness on a global scale has imposed considerable pressure for associated authorities to take actions. This includes the research into alternative options to conventional plastics which is latched on to a negative reputation. Nevertheless, the greenness of these so called environmentally friendly alternatives is often questionable. Since April 2015, the European Parliament and the Council established Directive (EU) 2015/720, has amended Directive 94/62/EC with regards to reducing the consumption of lightweight plastic carrier bags. Subsequently, the directive aims to reduce the level of littering of these bags which accumulates in the environment where more plastic-related problems (i.e. marine pollution) aggravates. In this work, a comprehensive fragmentation analysis was conducted on biodegradable plastic bags claimed to be green and environmentally friendly for arid environments. Various biodegradable compounds were tested and verified for such claims in this work. The first stage of the experimental campaign involved conditioning the samples under UV (to trigger decomposition) until fragmentation is reached; and record the Fourier Transform Infrared Spectroscopy spectra every 72 hours. The use of a reference material for comparative analysis was also applied, and the material was chosen to be polylactic acid. Furthermore, fragmentation in water was conducted where the plastic is conditioned in an aqueous environment. Lastly, the samples were mixed with sand and mud, and weathering induced fragmentation was continued. Infrared analysis was undertaken and the rate of biodegradation was determined. The above analysis was also used to draw lessons learnt from this exercise for oxo and hydro-biodegradables; and how to best utilize them as a waste management mitigation strategy.
In the current climate, there is a surge of controversy surrounding the topic of plastics. Undeniably and unavoidably, plastic has become a crucial part of this generation. However, the inappropriate disposal of plastic waste, as well as the increase in consumption, provokes serious environmental issues. The rising environmental awareness on a global scale has imposed considerable pressure for associated authorities to take actions. This includes the research into alternative options to conventional plastics which is latched on to a negative reputation. Nevertheless, the greenness of these so called environmentally friendly alternatives is often questionable. Since April 2015, the European Parliament and the Council established Directive (EU) 2015/720, has amended Directive 94/62/EC with regards to reducing the consumption of lightweight plastic carrier bags. Subsequently, the directive aims to reduce the level of littering of these bags which accumulates in the environment where more plastic-related problems (i.e. marine pollution) aggravates. In this work, a comprehensive fragmentation analysis was conducted on biodegradable plastic bags claimed to be green and environmentally friendly for arid environments. Various biodegradable compounds were tested and verified for such claims in this work. The first stage of the experimental campaign involved conditioning the samples under UV (to trigger decomposition) until fragmentation is reached; and record the Fourier Transform Infrared Spectroscopy spectra every 72 hours. The use of a reference material for comparative analysis was also applied, and the material was chosen to be polylactic acid. Furthermore, fragmentation in water was conducted where the plastic is conditioned in an aqueous environment. Lastly, the samples were mixed with sand and mud, and weathering induced fragmentation was continued. Infrared analysis was undertaken and the rate of biodegradation was determined. The above analysis was also used to draw lessons learnt from this exercise for oxo and hydro-biodegradables; and how to best utilize them as a waste management mitigation strategy.
Microplastics are an emergent yet critical issue for the environment because of high degradation resistance and bioaccumulation. Unfortunately, the current technologies to remove, recycle, or degrade microplastics are insufficient for complete elimination. In addition, the fragmentation and degradation of mismanaged plastic wastes in environment have recently been identified as a significant source of microplastics. Thus, the developments of effective microplastics removal methods, as well as, plastics recycling strategies are crucial to build a microplastics‐free environment. Herein, this review comprehensively summarizes the current technologies for eliminating microplastics from the environment and highlights two key aspects to achieve this goal: 1) Catalytic degradation of microplastics into environmentally friendly organics (carbon dioxide and water); 2) catalytic recycling and upcycling plastic wastes into monomers, fuels, and valorized chemicals. The mechanisms, catalysts, feasibility, and challenges of these methods are also discussed. Novel catalytic methods such as, photocatalysis, advanced oxidation process, and biotechnology are promising and eco‐friendly candidates to transform microplastics and plastic wastes into environmentally benign and valuable products. In the future, more effort is encouraged to develop eco‐friendly methods for the catalytic conversion of plastics into valuable products with high efficiency, high product selectivity, and low cost under mild conditions.
Mineral paper, a synthetic paper‐like material primarily composed of ground calcium carbonate (CaCO3) and a small amount of high‐density polyethylene (HDPE), has emerged as an important alternative to traditional paper and board due to the increasing demand for pulp and paper and the shortage of trees and fibrous material in many regions worldwide. This study aimed to investigate the impact of accelerated weathering and aerobic biodegradation on three different types of mineral papers. The specimens underwent 1000 h of accelerated weathering using a Gardner weathering device and were also buried in soil at a depth of 5 cm for 3 months with regular watering conditions for biodegradability testing. Physico‐chemical characterizations such as optical (whiteness), surface (roughness, contact angle, and paper topography), and chemical properties of the samples were studied before and after the artificial weathering and biodegradation tests. The results revealed a visible color change (darkening) in mineral papers, with an increase in HDPE content leading to a darker color after weathering and biological degradation. However, there were no significant differences in the color change between weathering and soil‐burial tests. The biodegradability test resulted in a decrease in ash content due to the demineralization process. All samples' surface roughness was reduced after weathering and biodegradation tests. The FT‐IR and EDS analyses confirmed the presence of calcium, carbon, and oxygen elements in all three samples, indicating a large amount of calcium carbonate in the mineral papers. The scanning electron microscopy (SEM) images showed the creation of micro holes and cracks on the surface of the samples after weathering and biodegradation. Overall, the soil‐burial test showed more degradation than the weathering test.Highlights The influence of weathering and biodegradation of mineral papers were studied After soil‐burial test, the ash content decreased due to the demineralization After weathering, micro cracks were created on the surface of the samples The degradation of the soil‐burial test was more than the weathering test Mineral papers most likely contain carbonate calcium and HDPE
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.