Entamoeba histolytica causes amebiasis, a significant global health issue, with millions affected annually, especially in developing countries. EhDUF2419, an important protein involved in E. histolytica’s queuine salvage pathway and its interaction network, remains unclear. To explore this, we transfected E. histolytica trophozoites with a plasmid encoding Myc-tagged EhDUF2419 and achieved successful overexpression. Through immunoprecipitation with the Myc antibody followed by mass spectrometry, we identified 335 proteins interacting with Myc-tagged EhDUF2419, including over 100 ribosomal proteins, along with translation initiation and elongation factors, and aminoacyl-tRNA synthetases. Ribosome purification revealed the presence of EhDUF2419 in ribosomal protein-enriched fractions. Treatment with queuosine (Q) significantly reduced the EhDUF2419 protein levels and decreased the Q-modified tRNA in Myc-tagged EhDUF2419 overexpressing trophozoites. This effect, which was Q-dependent, was not observed in strains carrying an empty vector control or overexpressing a truncated form of EhDUF2419 lacking catalytic activity. The reduction in the EhDUF2419 protein levels was regulated by proteasome-mediated degradation, as evidenced by the reduced degradation in the presence of MG132, a proteasome inhibitor. Our study uncovers the novel interaction of EhDUF2419 with ribosomal proteins and its regulation by the proteasome machinery, providing new insights into its role in E. histolytica and potential therapeutic strategies.