Naphthalene (NAP) has received particular attention due to its impact on the environment and human health, mandating its removal from water systems. In this work, the abatement of NAP in the aqueous phase was achieved using persulfate (PS) activated by Fe (III) and monochromatic LED light at a natural pH. The reaction was carried out in a slurry batch reactor using goethite as the Fe (III) source. The influence of the PS concentration, goethite concentration, irradiance, temperature and presence of organic matter, chloride, and bicarbonate on the abatement of NAP was studied. These variables were shown to have a different effect on NAP removal. The irradiance showed a maximum at 0.18 W·cm−2 where the photonic efficiency was the highest. As for the concentration of goethite and PS, the influence of the first one was negligible, whereas for PS, the best results were reached at 1.2 mM due to a self-inhibitory effect at higher concentrations. The temperature effect was also negative in the PS consumption. Regarding the effect of ions, chloride had no influence on NAP conversion but carbonates and humic acids were affected. Lastly, this treatment to remove NAP has proved to be an effective technique since minimum conversions of 0.92 at 180 min of reaction time were reached. Additionally, the toxicity of the final samples was decreased.