The fragmentation of three cyclic dipeptides (c-Glycil-Phenylalanine, c-Tryptophan-Tyrosine and c-Tryptophan-Tryptophan), characterized by an aromatic side chain, has been investigated by synchrotron radiation and photoelectron-photoion coincidence (PEPICO) experiments, assisted by atomistic simulations. The PEPICO experiments show that the charged moiety containing the aromatic side chain is the main fragment in the three samples. The theoretical exploration of the potential energy surfaces has allowed to identify the possible fragmentation paths leading to the formation of these fragments. Then, the analysis of the differences in the electronic density distributions of the neutral molecule and the cation and a molecular dynamics simulation provided an understanding of the preferred localization of the positive charge on the aromatic side chain of the cyclic dipeptide.