Puccinia triticina (Pt), the causal agent of wheat leaf rust, is one of the most destructive fungal pathogens threatening global wheat cultivations. The rational utilization of leaf rust resistance (Lr) genes is still the most efficient method for the control of such diseases. The Lr47 gene introgressed from chromosome 7S of Aegilops speltoides still showed high resistance to the majority of Pt races collected in China. However, the Lr47 gene has not been cloned yet, and the regulatory network of the Lr47-mediated resistance has not been explored. In the present investigation, transcriptome analysis was applied on RNA samples from three different wheat lines (“Yecora Rojo”, “UC1037”, and “White Yecora”) carrying the Lr47 gene three days post-inoculation with the epidemic Pt race THTT. A comparison between Pt-inoculated and water-inoculated “Lr47-Yecora Rojo” lines revealed a total number of 863 upregulated (q-value < 0.05 and log2foldchange > 1) and 418 downregulated (q-value < 0.05 and log2foldchange < −1) genes. Specifically, differentially expressed genes (DEGs) located on chromosomes 7AS, 7BS, and 7DS were identified, ten of which encoded receptor-like kinases (RLKs). The expression patterns of these RLK genes were further determined by a time-scale qRT-PCR assay. Moreover, heatmaps for the expression profiles of pathogenesis-related (PR) genes and several transcription factor gene families were generated. Using a transcriptomic approach, we initially profiled the transcriptional changes associated with the Lr47-mediated resistance. The identified DEGs, particularly those genes encoding RLKs, might serve as valuable genetic resources for the improvement of wheat resistance to Pt.