The post-earthquake retrofitting and repair process of a building is a key factor in improving its seismic capability. A thorough understanding of retrofitting methods and processes will aid in repairing post-earthquake buildings and improving seismic resilience. This study aims to develop a visualization framework for the post-earthquake retrofitting of buildings which builds models based on building information modeling (BIM) and realizes visualization using augmented reality (AR). First, multi-level representation methods and coding criteria are used to process the models for a damaged member. Then, an information collection template is designed for integrating multi-dimensional information, such as damage information, retrofitting methods, technical solutions, and construction measures. Subsequently, a BIM model is presented in three dimensions (3D) using AR. Finally, the visualization process is tested through experiments, which demonstrate the feasibility of using the framework to visualize the post-earthquake retrofitting of a building.