Reasonable planning and construction of emergency shelters is of great significance in improving the ability of cities to prevent and mitigate disasters and ensuring urban public safety. From the perspective of the needs of the evacuees, this paper constructs an evaluation index system for the service function of emergency evacuation places in four aspects: effectiveness, accessibility, safety and rescue responsiveness. This paper takes the central city of Songyuan as the case study area. We apply the entropy weight–TOPSIS–grey correlation method to evaluate the service functions of emergency shelters in the central city of Songyuan and determine their service function levels. An interactive analysis using the bivariate Moran index is used to determine the current state of supply and demand for places of refuge, in terms of their service functions and population distribution. It also makes recommendations for optimisation, based on the extent to which the service function of the emergency shelter is coordinated with the distribution of the population. The results show that of the 54 emergency shelters in the central city of Songyuan, the low and medium service function levels are divided into 33 and 15, with problems such as unreasonable spatial layout and inadequate emergency supplies and medical resources. The future construction of emergency shelters should focus not only on increasing the number and improving the scale, but also on considering the characteristics of population distribution, optimising the spatial distribution pattern and making full use of existing resources such as parks, squares and schools. The establishment of composite spatial resources for disaster preparedness and the promotion of a government-led model of interconnected shelter and emergency infrastructure can effectively enhance the spatial resilience of cities in response to natural hazards.