We present deep images of the SN 1006 remnant (G327.6+14.6) with the ACIS instrument on the Chandra X-Ray Observatory. Two regions have been observed, the synchrotron-dominated northeast limb and the thermally dominated northwest limb, as well as a substantial portion of the interior of the remnant shell. The brightest features in the X-ray images correspond closely to radio features in the northeast and to Balmer-dominated filaments in the northwest. The spectra of the brighter filaments in the northeast are harder, with less prominent line emission than those in the northwest. In addition to highly elongated filaments, both images show enhanced clumps of emission well inside of the shock front that appear to be dominated by emission from oxygen. These probably arise from shock-heated ejecta, based on analysis of their X-ray spectra. We find no firm evidence for a halo of X-ray emission outside the shock to the northeast, as predicted by the Fermi shock-acceleration picture, in which relativistic electrons should be diffusing ahead of the shock. Our limits on upstream emission are less than 1.5% of the postshock levels in regions where the supernova remnant is brightest. This strongly suggests that the bright rims are flattened sheets nearly perpendicular to the plane of the sky and that the magnetic field strength jumps at the shock by a factor significantly larger than 4, as has been proposed if the shock puts significant energy into accelerating nonthermal ions. The spectra obtained of the northwest rim are all dominated by the helium-like ions of O, Ne, Mg, and Si expected from shocks with ionization (n e t) parameters of order 100 cm À3 yr and electron temperatures of 0.5-1 keV, far lower than the postshock ion temperature implied by estimates of the shock speed obtained from the shape of the H line.