The effects of volume fraction and the stability of retained austenite on the formability of a 0.15C-1.5Si-1.5Mn (hereafter all in wt.%) TRIP-aided multiphase cold-rolled steel sheet were investigated after various heat treatments. The steel sheets were intercritically annealed at 800 o C, and isothermally treated at 400 o C and 430 o C. Microstructural observation, tensile tests and limiting dome height (LDH) tests were conducted on the heat-treated sheet specimens, and the changes in retained austenite volume fraction as a function of tensile strain were measured using an X-ray diffractometer. The results showed a plausible relationship between formability and retained austenite stability. Although the same amount of retained austenite was obtained after isothermal holding at different temperatures, better formability was obtained in the specimens with the higher stability of retained austenite. If the stability of the retained austenite is high, the strain-induced transformation of retained austenite to martensite can be stably progressed, resulting in a delay of necking to the high strain region and improvement in formability.