A mathematical model of three-dimensional nonequilibrium condensing wet-steam flow is established in Eulerian form, based on conservation laws for a mixture of steam and water droplets. The method of moments is introduced in modeling the droplet spectrum. To describe the nonequilibrium condensing process, models for classical nucleation and enhanced droplet growth are applied. A special high-order implicit scheme is constructed for this condensing flow model. Tables based on IAPWS-IF97 formulae are used in solving the thermal properties of wet steam. The numerical results for a two-dimensional supersonic nozzle and a low-pressure steam turbine stage are compared with experimental data. The good agreement indicates the effectiveness of the condensation model and numerical scheme.