2009
DOI: 10.1007/s10714-009-0851-5
|View full text |Cite
|
Sign up to set email alerts
|

Instability of black hole horizon with respect to electromagnetic excitations

Abstract: Analyzing exact solutions of the Einstein-Maxwell equations in the Kerr-Schild formalism we show that black hole horizon is instable with respect to electromagnetic excitations. Contrary to perturbative smooth harmonic solutions, the exact solutions for electromagnetic excitations on the Kerr background are accompanied by singular beams which have very strong back reaction to metric and break the horizon, forming the holes which allow radiation to escape interior of blackhole. As a result, even the weak vacuum… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
6
0
6

Year Published

2010
2010
2015
2015

Publication Types

Select...
7

Relationship

3
4

Authors

Journals

citations
Cited by 13 publications
(12 citation statements)
references
References 9 publications
0
6
0
6
Order By: Relevance
“…Regularization of the KN source does not remove this ring-string, but gives it a cut-off parameter (9), R = r e . It was shown in [10,11] and later specified in [44,45,46] that the EM excitations of the KN solution lead to appearance of traveling waves propagating along this ring-string. However, the light-like ring-string cannot be closed [47], since the points different by angular period, x µ (φ, t) and x µ (φ + 2π, t) should not coincide, and a peculiar point on the ring-string should make it open, forming a single quark-like endpoint.…”
Section: Fermionic Sector Of the Kn Bag Modelmentioning
confidence: 99%
“…Regularization of the KN source does not remove this ring-string, but gives it a cut-off parameter (9), R = r e . It was shown in [10,11] and later specified in [44,45,46] that the EM excitations of the KN solution lead to appearance of traveling waves propagating along this ring-string. However, the light-like ring-string cannot be closed [47], since the points different by angular period, x µ (φ, t) and x µ (φ + 2π, t) should not coincide, and a peculiar point on the ring-string should make it open, forming a single quark-like endpoint.…”
Section: Fermionic Sector Of the Kn Bag Modelmentioning
confidence: 99%
“…Твист и дивергенция конгруэнции ведут к повороту и масштабному рас-тяжению образа, в то время как сдвиг нарушает конформные свойства проекции, деформируя углы. Бессдвиговая конгруэнция решения Керра, σ = 0, сохраняет конформную структуру проектируемого образа при смещении экрана вдоль лучей конгруэнции 3) . Конформная структура и комплексная аналитичность входят в гео-метрию КШ через функцию Y (x), x = x µ ∈ M 4 , которая представляет собой кон-формную проекцию небесной сферы S 2 (с координатами (φ, θ)) на комплексную плоскость Y ∈ C 1 .…”
Section: решения кш базируются на метрической форме кшunclassified
“…Стационарные твисторно-лучевые решения КШ могут быть обобщены до за-висящих от времени волновых импульсов [3]. Поскольку горизонт чрезвычайно чувствителен к электромагнитным возбуждениям ЧД, он также может быть чув-ствительным к вакуумным электромагнитным флуктуациям.…”
Section: решения кш базируются на метрической форме кшunclassified
See 2 more Smart Citations