Genetic and physical mapping of the guppy (P. reticulata) have shown that recombination patterns differ greatly between males and females. Crossover events occur evenly across the chromosomes in females, but in male meiosis they are restricted to the tip furthest from the centromere of each chromosome, creating very high recombination rates per megabase, as in pseudo-autosomal regions (PARs) of mammalian sex chromosomes. We used GC content to indirectly infer recombination patterns on guppy chromosomes, based on evidence that recombination is associated with GC-biased gene conversion, so that genome regions with high recombination rates should be detectable by high GC content. We used intron sequences and 3rd positions of codons to make comparisons between sequences that are matched, as far as possible, and are all probably under weak selection. Almost all guppy chromosomes, including the sex chromosome (LG12), have very high GC values near their assembly ends, suggesting high recombination rates due to strong crossover localisation in male meiosis. Our test does not suggest that the guppy XY pair has stronger crossover localisation than the autosomes, or than the homologous chromosome in the close relative, the platyfish (Xiphophorus maculatus). We therefore conclude that the guppy XY pair has not recently undergone an evolutionary change to a different recombination pattern, or reduced its crossover rate, but that the guppy evolved Y-linkage due to acquiring a male-determining factor that also conferred the male crossover pattern. We also identify the centromere ends of guppy chromosomes, which were not determined in the genome assembly.