“…The rapid evolution of neural architectures (Kalchbrenner et al, 2014a;Kim, 2014;Hochreiter and Schmidhuber, 1997) and large pre-trained models (Devlin et al, 2019;Lewis et al, 2020) not only drive the state-of-the-art performance of many NLP tasks (Devlin et al, 2019;Liu and Lapata, 2019) to a new level but also change the way how researchers formulate the task. For example, recent years have seen frequent paradigm shifts for the task of named entity recognition (NER) from token-level tagging, which conceptualize NER as a sequence labeling (SEQLAB) task (Chiu and Nichols, 2015;Huang et al, 2015;Ma and Hovy, 2016;Lample et al, 2016;Akbik et al, 2018;Peters et al, 2018;Devlin et al, 2018;Xia et al, 2019;Luo et al, 2020;Lin et al, 2020;, to span-level prediction (SPANNER) (Li et al, 2020;Mengge et al, 2020;Jiang et al, 2020;Ouchi et al, 2020;, which regards NER either as question answering (Li et al, 2020;Mengge et al, 2020), span classification (Jiang et al, 2020;Ouchi et al, 2020;Yamada et al, 2020), and dependency parsing tasks .…”