2020
DOI: 10.48550/arxiv.2012.14253
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Instance Segmentation of Industrial Point Cloud Data

Abstract: The challenge that this paper addresses is how to efficiently minimize the cost and manual labour for automatically generating object oriented geometric Digital Twins (gDTs) of industrial facilities, so that the benefits provide even more value compared to the initial investment to generate these models. Our previous work achieved the current state-of-the-art class segmentation performance (75% average accuracy per point and average AUC 90% in the CLOI dataset classes) as presented in (Agapaki and Brilakis 202… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 44 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?