Access to reliable and sustainable energy in remote areas remains a pressing global challenge, significantly affecting economic development and the quality of life. This study focuses on the implementation of fully off-grid wind–biogas hybrid power systems to address this issue, with a focus on remote healthcare camp facilities. This paper investigates the performance of a hybrid renewable energy system within the context of one of Jordan’s northern remote areas, the Zaatari Syrian Refugee Camp, assessing its efficiency and environmental impact by taking the Zaatari hospital as the case study. Simulations were conducted to evaluate system components, including wind turbines, biogas generators, and diesel generators. A comprehensive evaluation was conducted, encompassing both the operational efficiency of the system and its impact on the environment. This study also considered various scenarios (SC#), including grid availability and autonomy levels, to optimize system configurations. The techno-economic assessment employed the levelized cost of energy (LCOE) as a key performance indicator, and sensitivity analyses explored the impact of diesel costs and wind power fluctuations on the system. Additionally, environmental assessment was conducted to evaluate the environmental effects of hybrid systems, with a specific focus on reducing greenhouse gas emissions. This investigation involved an examination of emissions in three different scenarios. The results indicate that the lowest LCOE that could be achieved was 0.0734 USD/kWh in SC#1 with 72.42% autonomy, whereas achieving 100% autonomy increased the LCOE to 0.1756 USD/kWh. Additionally, the results reveal that in scenarios SC#2 and SC#3, which have a higher proportion of diesel generator usage, there were elevated levels of NOx and CO2 emissions. Conversely, in SC#1, which lacks diesel generators, emissions were notably lower. The proposed hybrid system demonstrates its potential to provide a reliable energy supply to healthcare facilities in remote regions, emphasizing both economic feasibility and environmental benefits. These findings contribute to informed decision making for sustainable energy solutions in similar contexts, promoting healthcare accessibility and environmental sustainability.