In this paper, we investigate the blow-up rate and global existence of solutions to a parabolic system with absorption under the homogeneous Dirichlet boundary. By using the comparison principle and super-sub solution method, we obtain some sufficient conditions for the global existence and blow-up in finite time of solutions and establish some estimates of the upper and lower bounds of the blow-up rates. For the special case, if the domain is symmetric, for example, if it is a ball, the results of this paper also hold.