The profitability of most construction projects critically depends on construction productivity, which can lead to project cost overruns and schedule delays if not fully addressed. Although a literature review provides numerous worldwide examples of construction productivity improvement by mitigating and eliminating influencing disruptions through lean tool implementation, those studies considered a limited number of productivity disruptions in which the choice of lean tools was not clearly justified. This gap has significantly hampered the required improvements in construction productivity due to the limitations in selecting optimal solutions to fully overcome relevant disruptions and prevent their consequences. Hence, as a response to the aforementioned shortcomings, the present study develops the lean-Clancy-based decision-making matrix (LCDMM) that combines two different methods—the “Clancey heuristic model” and “lean construction”—with the goal of determining optimal and beneficial solutions to eliminate disruptions. The main thrust towards the adaptation of the matrix is based on its potential to link disruptions with solutions based on lean tools. In order to assess the practicality of LCDMM, the proposed solutions for two disruptions, as examples, are compared to existing practical solutions. Ultimately, it is clear that LCDMM, as a reusable tool, can assist scholars and practitioners in assembling the analysis of disruption waste and in selecting solutions for productivity improvement.