This paper is based on the experimental and numerical analysis work carried out as part of an international round robin aimed to predict the limit load of the ¼ scale Pre-stressed Concrete Containment Vessel (PCCV) which was tested at Sandia National Laboratories (SNL) in USA. The design pressure, Pd, for the PCCV was 0.39MPa. Pressurisation test was conducted causing global collapse of the PCCV structure, which occurred at the pressure of 1.423MPa (3.65 Pd). Displacements, loads and strains were monitored at 55 standard locations giving a unique opportunity to assess the accuracy and reliability in predicting failure modes and limit loads of PCCV structures. To simulate the inelastic response of the structure with extensive concrete cracking requires specialist numerical models and detailed geometric representation of the main structural features. One of the most important structural features was the prestressed hoop tendon system. The paper presents a brief explanation of the test, the instrumentation used to monitor the
tendon behaviour and describes the analytical models employed to predict the tendon behaviour.