Tri-axial high temperature superconducting (HTS) power cables are being developed to maximize their advantages, which include reducing amount of HTS wires, having a lowleakage magnetic field, and being compact compared to different types of HTS power cables. However, a drawback of HTS power cables is their inherent imbalance impedance, which is due to an asymmetrical structure on each phase. To solve this problem, the phases must be transposed. The authors designed a distribution class tri-axial HTS power cable, as well as a transposition-based connection scheme for the cable. The phases of the cable were connected to each other via transposition through their crossconnections. This was achieved with an insulated support structure with three walled-off areas for insulation between three the phases, as well as transposition conductors, including copper base and HTS wires. In this paper, a distribution class tri-axial HTS power cable and a connection scheme for it are designed. The results, including the transposition-based joint box design, are described in detail. The connection scheme will be applied to the joint box of the cable for high-capacity and long-distance transmission.