Optical nanoscale technologies often implement covalent or noncovalent strategies for the modification of nanoparticles, whereby both functionalizations are leveraged for multimodal applications but can affect the intrinsic fluorescence of nanoparticles. Specifically, single-walled carbon nanotubes (SWCNTs) can enable real-time imaging and cellular delivery; however, the introduction of covalent SWCNT sidewall functionalizations often attenuates SWCNT fluorescence. Recent advances in SWCNT covalent functionalization chemistries preserve the SWCNT's pristine graphitic lattice and intrinsic fluorescence, and here, such covalently functionalized SWCNTs maintain intrinsic fluorescencebased molecular recognition of neurotransmitter and protein analytes. The covalently modified SWCNT nanosensor preserves its fluorescence response towards its analyte for certain nanosensors, presumably dependent on the intermolecular interactions between SWCNTs or the steric hindrance introduced by the covalent functionalization that hinders noncovalent interactions with the SWCNT surface. These SWCNT nanosensors are further functionalized via their covalent handles with a targeting ligand, biotin, to self-assemble on passivated microscopy slides, and these dual-functionalized SWCNT materials are explored for future use in multiplexed sensing and imaging applications.