Aims/hypothesis Fenofibrate is a drug used to treat hyperlipidaemia that works by inhibiting hepatic triacylglycerol synthesis. Sterol regulatory element binding protein-1c (SREBP-1c) is a major regulator of the expression of genes involved in hepatic triacylglycerol synthesis. In addition, endoplasmic reticulum (ER)-bound transcription factor families are involved in the control of various metabolic pathways. Here, we show a novel function for an ER-bound transcription factor, cAMP response element binding protein H (CREBH), in fenofibrate-mediated inhibition of hepatic lipogenesis. Methods The effects of fenofibrate and adenovirus-mediated Crebh (also known as Creb313) overexpression (Ad-Crebh) on hepatic SREBP-1c production and lipogenesis in vitro and in vivo were investigated. We also examined whether downregulation of endogenous hepatic Crebh by small interfering (si)RNA restores the fenofibrate effect on hepatic lipogenesis and SREBP-1c production. Finally, we examined the mechanism by which CREBH inhibits hepatic SREBP-1c production. Results Fasting and fenofibrate treatment induced CREBH production and decreased SREBP-1c levels. Indeed, AdCrebh inhibited insulin-and liver X receptor agonist TO901317-induced Srebp-1c (also known as Srebf1) mRNA expression in cultured hepatocytes. Moreover, increased production of CREBH in the liver of mice following tail-vein injection of Ad-Crebh inhibited high-fat diet-induced hepatic steatosis through inhibition of Srebp-1c expression. The inhibition of endogenous Crebh expression by siRNA restored fenofibrate-induced suppression of Srebp-1c expression and hepatic lipid accumulation both in vitro and in vivo. Conclusions/interpretation These results show that fenofibrate decreases hepatic lipid synthesis through induction of CREBH. This study suggests CREBH as a novel negative regulator of SREBP-1c production and hepatic lipogenesis.