Protein self-assembly plays an important role in cellular processes. Whereas molecular dynamics (MD) represents a powerful tool in studying assembly mechanisms, its predictions depend on the accuracy of underlying force fields, which are known to overly promote protein assembly. We here examine villin headpiece domain, HP36, which remains soluble at concentrations amenable to MD studies. The experimental characterization of soluble HP36 at concentrations of 0.05 to 1 mM reveals concentrationindependent 90% monomeric and 10% dimeric populations. Extensive allatom MD simulations at two protein concentrations, 0.9 and 8.5 mM, probe the HP36 dimer population, stability, and kinetics of dimer formation within two MD force fields, Amber ff14SB and CHARMM36m. MD results demonstrate that whereas CHARMM36m captures experimental HP36 monomer populations at the lower concentration, both force fields overly promote HP36 association at the higher concentration. Moreover, contacts stabilizing HP36 dimers are force-field-dependent. CHARMM36m produces consistently higher HP36 monomer populations, lower association rates, and weaker dependence of these quantities on the protein concentration than Amber ff14SB. Nonetheless, the highest monomer populations and dissociation constants are observed when the TIP3P water model in Amber ff14SB is replaced by TIP4P/2005, showcasing the critical role of the water model in addressing the protein solubility problem in MD.