In several species, including humans, the dentate granule cell layer (GCL) of the hippocampus exhibits neurogenesis throughout adult life. The ability to regulate adult neurogenesis pharmacologically may be of therapeutic value as a mechanism for replacing lost neurons. Insulin-like growth factor-I (IGF-I) is a growth-promoting peptide hormone that has been shown to have neurotrophic properties. The relationship between IGF-I and adult hippocampal neurogenesis is to date unknown. The aim of this study was to investigate the effect of the peripheral administration of IGF-I on cellular proliferation in the dentate subgranular proliferative zone, which contains neuronal progenitor cells, and on the subsequent migration and differentiation of progenitor cells within the GCL. Using bromodeoxyuridine (BrdU) labeling, we found a significant increase of BrdUimmunoreactive progenitors in the GCL after 6 d of peripheral IGF-I administration. To determine the cell fate in progenitor progeny, we characterized the colocalization of BrdUimmunolabeled cells with cell-specific markers. In animals treated with IGF-I for 20 d, BrdU-positive cells increased significantly. Furthermore, the fraction of newly generated neurons in the GCL increased, as evaluated by the neuronal markers Calbindin D 28K , microtubule-associated protein-2, and NeuN. There was no difference in the fraction of newly generated astrocytes. Thus, our results show that peripheral infusion of IGF-I increases progenitor cell proliferation and selectively induces neurogenesis in the progeny of adult neural progenitor cells. This corresponds to a 78 Ϯ 17% ( p Ͻ 0.001) increase in the number of new neurons in IGF-I-treated animals compared with controls.
Key words: brain; rat; IGF-I; insulin-like growth factor-I; stem cell; progenitor cell; hippocampus; neurogenesis; stereologyMost CNS neurons are terminally differentiated and are, thus, not replaced after neuronal cell death. However, self-renewing cells with multilineage potential, designated stem cells or progenitor cells, have been identified in the adult mammalian brain