Insulin-like growth factor-I receptor (IGF-IR) signaling is required for carcinogenicity and proliferation of gastrointestinal (GI) cancers. In this study, we sought to evaluate the effect of a new tyrosine kinase inhibitor of IGF-IR, NVP-AEW541, on the signal transduction and the progression of GI carcinomas. We assessed the effect of NVP-AEW541 on signal transduction, proliferation, survival, and migration in four GI cancer cells: colorectal adenocarcinoma HT29, pancreatic adenocarcinoma BxPC3, esophageal squamous cell carcinoma TE1, and hepatoma PLC/PRF/5. The effects of NVP-AEW541 alone and with chemotherapy were studied in vitro and in nude mouse xenografts. We also analyzed the effects of NVP-AEW541 on insulin signals and hybrid receptor formation between IGF-IR and insulin receptor. NVP-AEW541 blocked autophosphorylation of IGF-IR and both Akt and extracellular signal-regulated kinase activation by IGF but not by insulin. NVP-AEW541 suppressed proliferation and tumorigenicity in vitro in a dose-dependent manner in all cell lines. The drug inhibited tumor as a single agent and, when combined with stressors, up-regulated apoptosis in a dose-dependent fashion and inhibited mobility. NVP-AEW541 augmented the effects of chemotherapy on in vitro growth and induction of apoptosis. Moreover, the combination of NVP-AEW541 and chemotherapy was highly effective against tumors in mice. This compound did not influence hybrid receptor formation. Thus, NVP-AEW541 may have significant therapeutic utility in human GI carcinomas both alone and in combination with chemotherapy. [Mol Cancer Ther 2008;7(6):1483 -93]