Microsomal triglyceride transfer protein (MTP) is rate limiting for the assembly and secretion of apolipoprotein B-containing lipoproteins. Elevated hepatic MTP mRNA level, presumably as a result of impaired insulin signaling, has been implicated in the pathophysiology of dyslipidemia associated with insulin resistance/type 2 diabetes. In this study, we showed that insulin decreases MTP mRNA level mainly through transcriptional regulation in HepG2 cells. We further characterized the corresponding signal transduction pathway, using chemical inhibitors and constitutively active and dominant negative forms of regulatory enzymes. We demonstrated that insulin inhibits MTP gene transcription through MAPK erk cascade but not through the PI 3-kinase pathway. Activation of ras through farnesylation is not a prerequisite for the inhibition.
Diabetes is not only a disease characterized by elevated blood glucose but also a serious vascular disease with poor prognosis (1). Individuals with type 2 diabetes demonstrate an increased risk of cardiovascular abnormalities, which are closely associated with an increased level of plasma apolipoprotein B (apoB)-containing lipoproteins, i.e., VLDLs and LDLs (2,3). Metabolic labeling studies indicate that elevated plasma levels of lipoproteins in patients with diabetes are caused, at least in part, by an increased hepatic output of apoB-containing lipoproteins (1,4,5). A better understanding of how hepatic lipoprotein production is regulated in patients with diabetes could potentially lead to the development of more effective strategic therapeutics to alleviate diabetic symptoms.Recent advances have established the fundamental role of the microsomal triglyceride transfer protein (MTP) in the assembly of apoB-containing lipoproteins. MTP is an important enabler for the secretion of VLDLs by the liver, chylomicrons by the intestine (reviewed in ref. 6), and even LDLs by the heart (7). Functionally, MTP catalyzes the loading of lipids to the nascent apoB in the endoplasmic reticulum (ER). This stabilizes the newly synthesized apoB (8,9) and facilitates further processing, leading to its secretion. Reduction of MTP activity in animals by inhibitors (10) or gene knockouts (11-13) effectively lowers the plasma lipoprotein level, whereas enforced expression of hepatic MTP in mice (14) increases the plasma level of apoB-containing lipoproteins.Emerging evidence has indicated that the pathophysiology of dyslipidemia observed under insulin resistance/type 2 diabetes is associated with an increased hepatic MTP mRNA level (15)(16)(17)(18). This is presumably due to an impaired insulin-regulatory system as insulin is a negative regulator of the MTP gene (19,20). A recent study demonstrated that improving insulin sensitivity is associated with the normalization of the hepatic MTP expression and the reduction of VLDL secretion in insulin-resistant hamsters (19). Therefore, knowledge regarding how insulin regulates hepatic MTP gene transcription (21) would provide important insights toward the unders...